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he Generalized Dhombres Equation with analytic data 

has been shown to have local analytic solutions and 

was thought to have entire solutions if the data is 

entire. We show that this is not generally true. We also 

present non-entire solutions for several other 

equations related to the Generalized Dhombres Equation. 
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INTRODUCTION 

The generalized Dhombres equation is given by  

𝑓(𝑧𝑓(𝑧)) = 𝜔(𝑓(𝑧)), (1) 

where 𝜔(𝑧) is a holomorphic function with expansion 𝜔(𝑧) =
𝑧𝑘+1 + 𝑐𝑘+2𝑧𝑘+2 + ⋯ and 𝑓(𝑧) is the unknown function of the 

form 𝑓(𝑧) = 𝑎𝑘𝑧𝑘 + 𝑎𝑘+1𝑧𝑘+1 + ⋯. This is a generalization of 

the Dhombres equation (𝑥𝑓(𝑥)) = 𝑓(𝑥)2 , which was 

introduced by Jean Dhombres in 1979 to describe a population 

model (Tomaschek 2011). Dhombres considered the original 

equation in the real domain, while Reich et al. considered in 

2005 the generalized equation in the complex domain. 

 

The solutions to the algebraic equation (1) are described in the 

following theorem (Reich et al. 2005): 

 

Theorem 1.1. Assume that f is an analytic solution of (1) in a 

disc 𝐺 = {𝑧; |𝑧| < 𝛿}, for some 𝛿 > 0, with 𝑓(0) = 0, and that 

𝜔  is analytic at 0 . Then 𝜔  and 𝑓  are of the form 𝜔(𝑦) =
𝑦𝑘+1 + 𝑑𝑘+2𝑦𝑘+2 + ⋯ , |𝑦| < 𝜖 , for some 𝜖 > 0  and 𝑘 ≥ 1 , 

and 𝑓(𝑧) = 𝑐𝑘𝑧𝑘 + 𝑐𝑘+1𝑧𝑘+1 + ⋯, with 𝑐𝑘 ≠ 0. 

Conversely, if 𝜔(𝑦) = 𝑦𝑘+1 + 𝑑𝑘+2𝑦𝑘+2 + ⋯,  |𝑦| < 𝜖, for 

some 𝜖 > 0 and 𝑘 ≥ 1, then there is exactly one local analytic 

function 𝑓 with 𝑓(𝑧) = 𝑧 + 𝑏2𝑧2 + ⋯, such that the set of local 

analytic solutions 𝑓(𝑧) = 𝑐𝑘𝑧𝑘 + 𝑐𝑘+1𝑧𝑘+1 + ⋯  of (1)  is the 

set  

{𝑓; 𝑓(𝑧) ≔ 𝑓(𝑐𝑘𝑧𝑘),  for some 𝑐𝑘 ∈ ℂ} (2) 

for |𝑧| < 𝛿, where 𝛿 depends in general on 𝑓.   

 

Reich (2007) claimed without proof that the following theorem 

will follow from the theorem above. 

 

Theorem 1.2. Assume that (1), where 𝜔 is an entire function, 

has a nonconstant holomorphic solution 𝑓 with 𝑓(0) = 0. Then 

𝜔(𝑦) = 𝑦𝑘+1 + 𝑑𝑘+2𝑦𝑘+2 + ⋯ , 𝑦 ∈ ℂ , for some 𝑘 ≥ 1 , and 

𝑓(𝑧) = 𝑐𝑘𝑧𝑘 + 𝑐𝑘+1𝑧𝑘+1 + ⋯ , with 𝑐𝑘 ≠ 0  and 𝑧 ∈ ℂ . 

Moreover, there is an entire function 𝑓  such that the set of 

holomorphic solutions of (1) in ℂ is the set (2) with 𝑧 ∈ ℂ. 

 

While Theorem 1.1 completely describes the set of local 

solutions of (1), we could not extend its proof to work for the 

entire case. 

 

T 
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In proving Theorem 1.1, Reich applied some transformations on 

(1) and ended up with  

𝑥𝑘𝑈(𝑥) = 𝑈(𝜓(𝑥)), (3) 

where 𝑈(𝑥) = 𝑇−1(𝑥) such that 𝑇(𝑥) is one of the solutions of 

𝑇(𝑥)𝑘 = 𝑓(𝑥)  and 𝜓(𝑥)  is the solution of the equation 

𝜓(𝑥)𝑘 = 𝜔(𝑥𝑘). 

 

This last equation is a type of Generalized Böttcher equation. 

Let 𝑎 ≠ 0 be a complex number and 𝑑 ≥ 2 be an integer. Let 

𝑝(𝑧) = 𝑎𝑧𝑑 + 𝑎𝑑+1𝑧𝑑+1 + ⋯  be holomorphic in a 

neighbourhood of 𝑧 = 0 . Let 𝑃(𝑋, 𝑌)  be a convergent power 

series with order 𝑑 + 1. The generalized Böttcher equation is 

given by  

𝜑(𝑝(𝑧)) = ∑ 𝑎𝑘𝑙𝑧
𝑘𝜑(𝑧)𝑙

𝑘+𝑙=𝑑

+ 𝑃(𝑧, 𝜑(𝑧)), (4) 

with 𝑎𝑘𝑙 ∈ ℂ. 

 

Obtaining the formal solution of (4) directly from the equation 

is difficult, thus the need to consider an equation equivalent to 

it. If we let 𝑧 = 𝑆(𝜁) = 𝜁 + 𝑠2𝜁2 + ⋯ with 𝑆 being the unique 

solution of 𝑆(𝑎𝜁𝑑) = 𝑝(𝑆(𝜁)) (see Reich 2004), then we can 

transform (4) to 

𝜓(𝑎𝜁𝑑) = ∑ 𝑎𝑘𝑙𝜁
𝑘𝜓(𝜁)𝑙

𝑘+𝑙=𝑑

+ 𝑄(𝜁, 𝜓(𝜁)), (5) 

where 𝜓(𝜁) = (𝜑 ∘ 𝑆)(𝜁) is the unknown function, 𝑎  and 𝑎𝑘𝑙 

have the same definitions as in (4) and 𝑄(𝑋, 𝑌) is a convergent 

power series with order at least 𝑑 + 1. 

 

To prove the convergence of the formal solution of (5), Reich 

applied the Implicit Function Theorem to a majorant equation. 

In view of this, we suspect that his method cannot easily be 

extended to cover the case with entire data. 

 

In this paper, we will present a particular generalized Dhombres 

Equation with an entire 𝜔(𝑧) but having a non-entire solution 

𝑓(𝑧). In relation to this, we will also present non-entire solutions 

of some generalized Böttcher and related equations. 

 

MAIN RESULTS 

 

Before we present the non-entire solutions of the equations 

mentioned earlier, we first state a useful fact concerning power 

series. 

 

Lemma 2.1. Let 𝑓(𝑥) = ∑𝑎𝑛𝑥𝑛 , |𝑥| < 𝛿 , for some 𝛿 > 0. If 

|𝑎𝑛| ≥ 1 for infinitely many 𝑛 ∈ ℕ, then 𝑓(𝑥) is not entire.  

 

Proof. If |𝑎𝑛| ≥ 1 for infinitely many 𝑛, then limsup |𝑎𝑛|1/𝑛 ≥
1. Therefore, by the Cauchy-Hadamard Formula, the radius of 

convergence of ∑𝑎𝑛𝑥𝑛 is at most 1.    

 

We now present a particular example of Equations (4) and (5) 

with entire data but with non-entire solutions. 

 

Proposition 2.2. Let 𝑑 ∈ ℕ , 𝑑 ≥ 2 , and 𝑝(𝑋)  be an entire 

function with expansion 𝑝(𝑋) = 𝑝𝑑+1𝑋𝑑+1 + 𝑝𝑑+2𝑋𝑑+2 + ⋯ , 
where 𝑝𝑖 ≥ 0 for all 𝑖 ≥ 𝑑 + 1. Then the equation  

𝜓(𝜁𝑑) = 𝜁𝑑−1𝜓(𝜁) − 𝜁𝑑𝜓(𝜁) − 𝑝(𝜁) (6) 

has a solution that is not entire. 

 

Note that (6) is a particular form of Equations (4) and (5) with 

𝑃(𝜁, 𝜓) = 𝑄(𝜁, 𝜓) = −𝜁𝑑𝜓 − 𝑝(𝜁). 

 

Proof. As in Reich (2004), let 𝜓(𝜁) = ∑ 𝑎𝑘𝑧𝑘
𝑘≥1 . Substituting 

this expansion to (6) and using the expansion of 𝑝(𝑋), we have 

∑ 𝑎𝑘𝜁𝑘𝑑

∞

𝑘=1

= ∑ 𝑎𝑘𝜁𝑘+𝑑−1

∞

𝑘=1

− ∑ 𝑎𝑘𝜁𝑘+𝑑

∞

𝑘=1

− ∑ 𝑝𝑘𝜁𝑘

∞

𝑘=𝑑+1

. (7) 

Comparing the coefficients of 𝜁𝑑 in both sides of the equation, 

we get 𝑎1 = 𝑎1. Thus we can choose the value of 𝑎1 freely, and 

we take 𝑎1 = 1. Comparing the coefficients of 𝜁𝑛, where 𝑛 =
𝑘𝑑 for some 𝑘 ∈ ℕ, we get 𝑎𝑑(𝑘−1)+1 = 𝑎𝑘 + 𝑎𝑑(𝑘−1) + 𝑝𝑘𝑑. 

 

Looking at the coefficients of 𝜁𝑛 in both sides of (7), where 𝑛 =
𝑘𝑑 + 𝑙 , with 0 < 𝑙 ≤ 𝑑 − 1 , we have 𝑎𝑑(𝑘−1)+𝑙+1 =

𝑎𝑑(𝑘−1)+𝑙 + 𝑝𝑘𝑑+𝑙. 

 

Hence, the coefficient 𝑎𝑛 is given by  

𝑎𝑛 = {

𝑎𝑚+1 + 𝑎𝑛−1 + 𝑝𝑛+𝑑−1, if 𝑛 = 𝑚𝑑 + 1 for some 

positive integer 𝑚,
𝑎𝑛−1 + 𝑝𝑛+𝑑−1, otherwise.

 

 

To show that this solution 𝜓 is not entire, it is enough to show 

that 𝑎𝑛 ≥ 1 for all 𝑛 ∈ ℕ. We use induction to show this. Note 

that 𝑎1 = 1 ≥ 1 so suppose 𝑎𝑘 ≥ 1 for 𝑘 = 1,2,3, … , 𝑛. If 𝑛 =
𝑙𝑑 , for some positive integer 𝑙 , then 𝑎𝑛+1  = 𝑎𝑙+1 + 𝑎𝑛  +
 𝑝𝑛+𝑑  ≥  1. On the other hand, if 𝑛 ≠ 𝑙𝑑 for any positive integer 

𝑙, then 𝑎𝑛+1 =  𝑎𝑛 + 𝑝𝑛+𝑑 ≥ 1. It follows that |𝑎𝑛| ≥ 1 for all 

𝑛, therefore, by Lemma 2.1, the solution is not entire.    

 

Next, we show that a special case of (3)  has a non-entire 

solution if 𝜓(𝑥) is entire. 

 

Proposition 2.3. The equation  

𝑥𝑈(𝑥) = 𝑈(𝑥2 + 𝑥𝑗), (8) 

where 𝑗 ∈ ℕ and 𝑗 ≥ 4, has a non-entire solution. 

 

Note that Equation (8) is a specific case of Equation (3) with 

𝑘 = 1 and 𝜓(𝑥) = 𝑥2 + 𝑥𝑗 . We can also view Equation (8) as 

a special case of (4). 

 

Proof. As in Reich et al. (2005), let 𝑈(𝑥) = ∑ 𝑎𝑖𝑥𝑖
𝑖≥1 . Then (8) 

becomes  

∑ 𝑎𝑖𝑥𝑖+1

∞

𝑖=1

= ∑ 𝑎𝑖(𝑥2 + 𝑥𝑗)
𝑖

∞

𝑖=1

. (9) 

 

Comparing the coefficients of 𝑥2, we get 𝑎1 = 𝑎1 and we again 

set 𝑎1 = 1. Comparing the coefficients of 𝑥3, we get 𝑎2 = 0. In 

fact, 𝑎𝑖 = 0 for 𝑖 = 2, … , 𝑗 − 2. If we compare the coefficients 

of 𝑥𝑗 , then we obtain 𝑎𝑗−1 = 𝑎1 = 1. 

 

By applying the Binomial Theorem on (9) and comparing the 

coefficients of 𝑥𝑛+1, we see that  

𝑎𝑛 = ∑ 𝑎𝑖𝑆𝑖

𝐵𝑛

𝑖=1

, (10) 

where 𝐵𝑛 = ⟦(𝑛 + 1)/2⟧  and 𝑆𝑖 = ∑ ( 𝑖
𝑘)2𝑖+𝑗(𝑖−𝑘)=𝑛+1 . It is 

understood that 𝑆𝑖 = 0 if no integer 𝑘 ≤ 𝑖 satisfies 2𝑖 + 𝑗(𝑖 −
𝑘) = 𝑛 + 1. Otherwise, 𝑆𝑖 > 0. It follows that 𝑎𝑛 ≥ 0  for all 

𝑛 ∈ ℕ since 𝑆𝑛 ≥ 0 for all 𝑛 ∈ ℕ. 

 

Now let 𝑚𝑛 = 2𝑛(𝑗 − 1) − ∑ 2𝑘𝑛−1
𝑘=0 = 2𝑛(𝑗 − 2) + 1 . We 

claim that 𝑎𝑚𝑛
≥ 1 for all 𝑛 ∈ ℕ. 

 

Note that 𝑚1 = 2(𝑗 − 1) − 1 and so, 

𝑎𝑚1
= ∑ 𝑎𝑖

𝐵𝑚1

𝑖=1

∑ (
𝑖

𝑘
)

2𝑘+𝑗(𝑖−𝑘)=2(𝑗−1)

. 

In particular, when 𝑖 = 𝑘 = 𝑗 − 1, the addend is simple equal to 

𝑎𝑗−1 = 𝑎1 = 1 . Since the addends are all nonnegative, we 

conclude that 𝑎𝑚1
≥ 1. 
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Now suppose that 𝑎𝑚𝑘
≥ 1 for 𝑘 = 1,2, … , 𝑛 − 1. We wish to 

show that 𝑎𝑚𝑛
≥ 1. Note that  

𝑚𝑛 + 1

2
=

1

2
(2𝑛(𝑗 − 1) − ∑ 2𝑘

𝑛−1

𝑘=1

) = 2𝑛−1(𝑗 − 1) − ∑ 2𝑘−1

𝑛−1

𝑘=1

, 

which is simply equal to 𝑚𝑛−1, and so 

𝑎𝑚𝑛
= ∑ 𝑎𝑖

𝐵𝑚𝑛

𝑖=1

∑ (
𝑖

𝑘
)

2𝑘+𝑗(𝑖−𝑘)=𝑚𝑛+1

. 

As before, when 𝑖 = 𝑘 = (𝑚𝑛 + 1)/2 , the addend becomes 

𝑎𝑚𝑛−1
, which is at least 1 by hypothesis. 

 

Since 𝑎𝑛 ≥ 1  for infinitely many 𝑛 ∈ ℕ , by Lemma 2.1, the 

constructed 𝑈(𝑥) is not entire.  

 

Finally, we consider a special case of the Generalized Dhombres 

Equation (1). We take 𝜔(𝑧) = 𝑧2 − 𝑧3. 

 

Proposition 2.4. The equation  

𝑓(𝑧𝑓(𝑧)) = [𝑓(𝑧)]2 − [𝑓(𝑧)]3, (11) 

has a non-entire solution. 

 

Proof. Let 𝑓(𝑧) = ∑ 𝑏𝑛𝑧𝑛
𝑛≥1 . Substituting this to (11)  and 

comparing the coefficients of 𝑧2 , we get 𝑏1
2 = 𝑏1

2 , and so we 

choose 𝑏1 = 1 . Comparing the coefficients of 𝑧3  and 𝑧4 , we 

will get 𝑏2 = 1 and 𝑏3 = 3, respectively. In general, comparing 

the coefficients of 𝑧𝑛+1, for 𝑛 > 1, we get  

𝑏𝑛 = ∑ 𝑏𝑖

𝑑𝑛

𝑖=2

∑ 𝑏𝑛1
𝑏𝑛2

⋯ 𝑏𝑛𝑖

𝑛1+⋯+𝑛𝑖+𝑖=𝑛+1

− ∑ 𝑏𝑗𝑏𝑛+1−𝑗

𝑛−1

𝑗=2

+ ∑ 𝑏𝑖𝑏𝑗𝑏𝑘

𝑖+𝑗+𝑘=𝑛+1

, 

where 𝑑𝑛 = ⟦(𝑛 + 1)/2⟧ . Since 𝑏1 = 1 ∈ ℤ , this formula 

assures us that each 𝑏𝑛 is an integer. 

 

We claim that there are infinitely many nonzero coefficients 𝑏𝑛. 

We will prove this claim by contradiction. Suppose otherwise, 

that is, for some 𝑚 ∈ ℕ , 𝑓(𝑧) = ∑ 𝑏𝑛𝑧𝑛𝑚
𝑛=1 , where 𝑏𝑚 ≠ 0 . 

Then (11) will now be  

∑ 𝑏𝑛

𝑚

𝑛=1

(∑ 𝑏𝑖𝑧
𝑖+1

𝑚

𝑖=1

)

𝑛

= (∑ 𝑏𝑛𝑧𝑛

𝑚

𝑛=1

)

2

− (∑ 𝑏𝑛𝑧𝑛

𝑚

𝑛=1

)

3

. (13) 

 

Note that since 𝑏3 = 3 ≠ 0, it follows that 𝑚 ≥ 3. Looking at 

the degree of the polynomials on both sides of (13), we see that 

the polynomial on the left-hand side has degree 𝑚(𝑚 + 1) 

while the polynomial on the right-hand side has degree 3𝑚 . 

Hence, we conclude that 𝑚 = 2, which contradicts the fact that 

𝑚 ≥ 3. Thus, there are infinitely many nonzero 𝑏𝑛. Since 𝑏𝑛 ∈
ℤ for all 𝑛 ∈ ℕ, there are infinitely many 𝑛 ∈ ℕ such that |𝑏𝑛| ≥
1, and therefore by Lemma 2.1, 𝑓(𝑧) is not entire.    
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